
NAVAL 

POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

AN EXPERIMENT WITH RTEMS 

by 

David J. Shifflett and Thuy D. Nguyen 

February 2015 

Approved for public release; distribution is unlimited 

NPS-CAG-15-003



THIS PAGE INTENTIONALLY LEFT BLANK



1 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 

sources, gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other 

aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

12-02-2015 
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From-To) 

4. TITLE AND SUBTITLE 

AN EXPERIMENT WITH RTEMS  

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT 

NUMBER 

6. AUTHOR(S)

David J. Shifflett and Thuy D. Nguyen 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)

Naval Postgraduate School 

Monterey, CA 93943-5000 

8. PERFORMING 

ORGANIZATION REPORT 

NUMBER 

NPS-CAG-15-003 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S 

ACRONYM(S) 

11. SPONSOR/MONITOR’S 

REPORT NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited 

13. SUPPLEMENTARY NOTES 

The views expressed in this material are those of the authors and do not reflect the official policy or position of the Department of 

Defense or the U.S. Government. 

14. ABSTRACT 

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open source real-time executive used in many embedded 
systems. This report describes our effort to gain hands-on experience with RTEMS and provides instructions on how to build and use 

RTEMS in two different operating environments. 

15. SUBJECT TERMS 

RTEMS, SPARC simulator, Raspberry Pi. 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 

OF ABSTRACT 

UU 

18. NUMBER 

OF PAGES 

43 

19a. NAME OF 

RESPONSIBLE PERSON 

Thuy D. Nguyen 
a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 

c. THIS PAGE 

Unclassified 19b. TELEPHONE 

NUMBER (include area code) 

(831) 656-3989 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK   



 3 

NAVAL POSTGRADUATE SCHOOL 

Monterey, California 93943-5000 

 

 

Ronald A. Route  Douglas A. Hensler 

President  Provost 

 

 

 

The report entitled “An Experiment with RTEMS” was prepared for the Cyber Academic 

Group at the Naval Postgraduate School. 

 

 

Further distribution of all or part of this report is authorized. 

 

 

 

 

 

This report was prepared by: 

 

 

 

 

 

________________________ ________________________ 

 David J. Shifflett  Thuy D. Nguyen  

 Faculty Associate – Research  Faculty Associate – Research 

 

 

 

 

 

 

Reviewed by:  Released by: 

 

 

 

________________________ ________________________ 

 Cynthia E. Irvine  Jeffrey D. Paduan 

 Chair of Cyber Academic Group Dean of Research  

  



 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK   



 5 

ABSTRACT 

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open 

source real-time executive used in many embedded systems. This report describes our 

effort to gain hands-on experience with RTEMS and provides instructions on how to 

build and use RTEMS in two different operating environments. 

  



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK   



 7 

TABLE OF CONTENTS 

I. INTRODUCTION .................................................................................................... 11 

A. MOTIVATION.................................................................................................... 11 
B. REPORT ORGANIZATION ............................................................................. 12 

II. METHODS AND EQUIPMENT ........................................................................... 13 

A. RTEMS OVERVIEW ......................................................................................... 13 
B. APPROACH ........................................................................................................ 13 
C. EQUIPMENT PREREQUISITES..................................................................... 15 

1. Hardware requirements for the development system .................................. 15 
2. Hardware requirements for the target system .............................................. 15 
3. Hardware requirements for the Raspberry Pi console ................................ 16 
4. Hardware requirements for the Windows system ........................................ 16 
5. Software requirements for the development system ..................................... 16 
6. Software requirements for the target system ................................................ 16 
7. Software requirements for the Raspberry Pi console ................................... 16 
8. Software requirements for the Windows system .......................................... 17 

III. PROCEDURES ..................................................................................................... 19 

A. DEVELOPMENT SYSTEM SET-UP ............................................................... 19 
B. EXECUTION OF RTEMS IN A SIMULATOR .............................................. 23 
C. EXECUTION OF RTEMS ON RASPBERRY PI ........................................... 25 

IV. CONCLUSION AND FUTURE WORK ............................................................. 37 

LIST OF REFERENCES ............................................................................................... 39 

INITIAL DISTRIBUTION LIST .................................................................................. 41 

 

  



 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 9 

LIST OF FIGURES 

Figure 1. Simulator experiment diagram. ......................................................................... 14 
Figure 2. Bare hardware experiment diagram................................................................... 14 
Figure 3. Listing of SPARC tools. .................................................................................... 22 
Figure 4. Compiler version for SPARC CPU. .................................................................. 22 
Figure 5. Listing of sample applications. .......................................................................... 24 
Figure 6. GDB simulator startup. ...................................................................................... 25 
Figure 7. Output of ticker application in the GDB simulator. .......................................... 25 
Figure 8. Listing of ARM tools......................................................................................... 27 
Figure 9.  Compiler version for ARM CPU. ..................................................................... 27 
Figure 10. Installed Raspberry Pi tools. ............................................................................ 28 
Figure 11. Raspberry Pi sample executables. ................................................................... 29 
Figure 12. RKI build status. .............................................................................................. 30 
Figure 13. A Raspberry Pi bootable file ........................................................................... 30 
Figure 14. Contents of SD card ready for booting on the Raspberry Pi ........................... 32 
Figure 15. Output of ticker application on Raspberry Pi .................................................. 33 
Figure 16. RKI start-up screen .......................................................................................... 34 
Figure 17. RKI file-related commands ............................................................................. 35 
Figure 18. RKI whetstone results ...................................................................................... 36 
Figure 19. RKI resource usage.......................................................................................... 36 
 

  



 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



 11 

I. INTRODUCTION 

This report describes our effort to gain hands-on experience with the Real-Time 

Executive for Multiprocessor Systems (RTEMS) in support of our investigation of 

network covert communications in space systems--specifically in the context of 

commercially hosted payloads. 

 

A. MOTIVATION 

RTEMS is an open source, high performance, real-time executive used in many 

embedded systems, including space flight and aviation [1]. RTEMS supports a number of 

space-qualified microprocessors such as LEON (SPARC) [2] and RAD750 (PowerPC) 

[3], making it a popular candidate for space systems. Space missions that utilize RTEMS 

for on-board instruments include four spacecraft developed by the European Space 

Agency (ESA)—Herschel, Planck, Pleiades and Aeolus, and the Mars Reconnaissance 

Orbiter (National Aeronautics and Space Administration). On the ESA satellites, RTEMS 

is used in the scheduling engine of the Spacecraft Management Unit [4]. For the Mars 

orbiter, RTEMS is used in Electra Proximity Link software-defined radio which is 

responsible for relaying commands and data between Earth and landers on Mars [5]. 

RTEMS is also one of the real-time operating systems that NASA’s Core Flight Software 

(CFS) supports; CFS is used on the Lunar Reconnaissance Orbiter and other NASA 

missions [6]. 

The rising cost of developing and maintaining government-owned space vehicles 

has pushed the Department of Defense to pursue a piggyback approach that allows 

hosting government-supplied payloads on commercial space platforms. These 

commercially hosted payloads require stringent confidentiality protection to protect 

against illegal information leakage. We are currently investigating covert channel attacks 

on network protocols used in spacecraft that host multiple payloads operating at different 

sensitivity levels, i.e., spacecraft with multilevel security capabilities. We have identified 

several potential covert channels in the MIL-STD-1553B and SpaceWire protocols [7] 

and, since RTEMS supports these protocols, knowing the inner working of RTEMS will 



 12 

allow further experimentation to determine real-world exploitation scenarios and 

defenses against the identified covert channels. 

 

B. REPORT ORGANIZATION 

The remainder of this report begins with information about the RTEMS 

distribution and the approach we used for this experiment. Next, we provide instructions 

on how to build and use RTEMS in two different operating environments. Last, we close 

with a brief description of future work. 

 



 13 

II. METHODS AND EQUIPMENT  

Our experimentation with RTEMS includes two scenarios: running RTEMS in a 

hardware simulator and running RTEMS on a single board computer (SBC). This section 

discusses the choices made for each of these experiments, and the equipment necessary to 

perform the experiments. 

 

A. RTEMS OVERVIEW 

“The Real-Time Executive for Multiprocessor Systems or RTEMS is a [sic] open 

source fully featured Real Time Operating System or RTOS that supports a variety of 

open standard application programming interfaces (API) and interface standards such as 

POSIX and BSD sockets” [8]. RTEMS is available on a wide variety of CPUs (e.g., 

ARM, SPARC, PowerPC and Intel) [9] and an even wider range of processor boards 

[10]. Support for a processor board is provided through a Board Support Package (BSP). 

To use RTEMS, a developer first decides the target CPU and BSP, builds the RTEMS 

tools (e.g., compiler, linker, and debugger) for that combination, and then uses those tools 

to build RTEMS and the desired RTEMS application. The result is a single executable 

file containing both RTEMS and the application. 

RTEMS provides standard operating system interfaces for file systems, graphics 

libraries, networking, memory management, task management, etc. Many of these 

interfaces are POSIX-compliant for portability.  

 

B. APPROACH 

Our strategy consists of two experiments. The first experiment tests RTEMS on a 

simulator that is distributed with RTEMS. Using the simulator allows us to verify the 

build environment, experiment with RTEMS functionalities, and prepare for running it on 

an SBC. The second experiment exercises RTEMS on bare hardware using a selected 

SBC. Figure 1 shows a block diagram of the first experiment and Figure 2 shows a 

diagram of the second experiment. 



 14 

 

Figure 1. Simulator experiment diagram. 

 

 
Figure 2. Bare hardware experiment diagram. 

 



 15 

For the bare hardware experiment, the first step is to choose an SBC on which 

RTEMS can run. Support for MIL-STD-1553B [11] and SpaceWire [12], and 

compatibility with RTEMS, through an existing BSP, are the deciding factors. 

The candidate boards were: BAE RAD750 [13], Motorola MCP750 [25], 

Raspberry Pi [16], and Aeroflex-Gaisler GR-LEON4-ITX [14] and GR-CPCI-LEON4-

N2X [15]. Four of these boards were rejected for two reasons: 1) availability—the 

MCP750 is no longer produced, though used versions are available and 2) cost—the 

RAD750 and LEON4 boards are too expensive for research experimentation. 

The Raspberry Pi was used for the bare hardware experiment for two reasons: the 

existence of an RTEMS BSP for the Raspberry Pi and the availability of online resources 

for building RTEMS to run on the Raspberry Pi [17]. 

  

C. EQUIPMENT PREREQUISITES 

This section describes the hardware and software requirements. 

1. Hardware requirements for the development system 

For both experiments, a development system meeting the following requirements 

is required: 

 The system must have at least a 100 GB hard disk and 4 GB of RAM. 

 The system must have Internet connectivity for updates, package installs, 

and access to the git repositories. 

The development system can be either a physical computer or a virtual machine. 

 

2. Hardware requirements for the target system 

The simulator experiment runs directly on the development system. 

The bare hardware experiment runs on a Raspberry Pi model B+ board. No 

special configuration of the Raspberry Pi is required for this experiment. 

A micro Secure Digital (SD) memory card and an SD card reader are required to 

copy files from the development system to the SD card for use with the Raspberry Pi. We 

used the Insignia SD/MMC Memory Card Reader (model NS-CR2021). 

 



 16 

3. Hardware requirements for the Raspberry Pi console 

A separate system is required to act as a console for the Raspberry Pi. This system 

must be able to establish a serial connection via a USB interface, usually through a 

terminal emulation program, such as Putty [26] or CoolTerm [27]. We used an Apple 

Mac Pro running the CoolTerm terminal emulator software. This system is connected to 

the Raspberry Pi via a special USB-serial cable [20]. 

 

4. Hardware requirements for the Windows system 

We used a Windows system to copy Raspberry Pi boot files, and RTEMS 

executable files, to an SD card for booting the Raspberry Pi. 

 

5. Software requirements for the development system 

The development system needs the base Fedora 19 installation [23] and the 

following additional packages required by RTEMS: ncurses-devel, git, bison, gcc, cvs, 

gcc-c++, flex, texinfo, patch, perl-Text-ParseWords, zlib-devel, and python-devel. 

The following software must be downloaded from git repositories as needed 

during the experimentation procedures: 

 RTEMS Source Builder 

 RTEMS source 

 An example RTEMS application for the Raspberry Pi 

 

6. Software requirements for the target system 

The software needed to boot the Raspberry Pi can be downloaded from the 

Raspberry Pi git repository (http://github.com/raspberrypi/firmware/tree/master/boot). 

The files needed are: 

 bootcode.bin 

 start.elf 

 

7. Software requirements for the Raspberry Pi console 

The Raspberry Pi console system needs a terminal emulator program, such as 

Putty or CoolTerm. 



 17 

8. Software requirements for the Windows system 

The Windows system needs the drivers for the SD card reader. 

  



 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 19 

III. PROCEDURES 

This section describes the procedures to run an RTEMS executable in a SPARC 

simulator and on a Raspberry Pi. 

Section A provides instructions for setting up a development system to handle the 

building of RTEMS and RTEMS applications. Section B gives instructions for building 

and running an RTEMS executable within a simulator—an RTEMS executable includes 

both RTEMS and an application. Finally, Section C contains instructions for how to build 

an RTEMS executable for the Raspberry Pi and run it on a Raspberry Pi. 

In the instructions below the reader will enter many commands in a terminal 

window on the development system. These commands are formatted in Courier 12 

font. 

 

A. DEVELOPMENT SYSTEM SET-UP 

In this example Fedora 19 was chosen to be the host operating system because it 

is well understood and there is documentation for installing RTEMS on Fedora 19 [18]. 

Preparation of this system includes installing software packages needed by RTEMS, 

using the RTEMS Source Builder (RSB) to build the tools (compiler, linker, debugger, 

etc.) required to build RTEMS, making a local copy of the RTEMS source repository, 

and building the RTEMS BSP for the target system. 

 

Step 1: Install Fedora 19 

During the installation of Fedora 19, a root user and a development user must be 

created. These procedures assume the development user is named user and the privileged 

root user is named root. The full details of installing Fedora 19 are beyond the scope of 

this report, but can be found in [23]. 

 

Step 2: Enable execution of privileged commands 

Privileged commands must be invoked during the preparation of the development 

system, and installation of RTEMS. The steps to enable the development user to run 

privileged commands are: 



 20 

1. Login as user. 

2. Start a terminal window. 

3. Switch privileges to run as root. Execute ‘su –’ and enter the password for 

root when prompted. 

4. Enable user to run privileged commands. At the root prompt, execute 

‘visudo’. Directions for using this editor can be found in [28]. 

5. Scroll down to the line that looks like ‘root ALL=(ALL) ALL’. 

6. Copy and paste this line immediately below the line being copied. 

7. In the new line, change root to user. 

8. Save the file and exit the editor. 

9. Exit from the root prompt. Execute ‘exit’. 

 

Step 3: Update Fedora 19 

RTEMS needs software beyond the base installation of Fedora 19. The steps to 

update the system and add packages needed by RTEMS are:  

1. Login as user and start a terminal window. 

2. Completely update the base operating system. Execute ‘sudo yum 

update’. 

3. Add the packages needed by RTEMS. Execute ‘sudo yum install 

ncurses-devel git bison gcc cvs gcc-c++ flex texinfo 

patch perl-Text-ParseWords zlib-devel python-devel’. 

 

Step 4: Build RTEMS tools 

The RTEMS tools are built using the RTEMS Source Builder. The steps to do this 

are:  

1. Login as user and execute the following commands. 

2. mkdir -p ~/development/rtems/src 

3. cd -p ~/development/rtems/src 

4. git clone git://git.rtems.org/rtems-source-

builder.git 

5. cd rtems-source-builder/ 



 21 

6. source-builder/sb-check 

This command verifies that all necessary dependencies have been satisfied. If 

any errors are shown, or dependencies are not satisfied, resolve the problems, 

or missing dependencies, before continuing. 

7. cd rtems 

8. ../source-builder/sb-set-builder --list-bsets 

This command lists available versions and architectures. 

9. ../source-builder/sb-set-builder --log=l-sparc.txt -

-prefix=$HOME/development/rtems/4.11 –-with-rtems 

4.11/rtems-sparc 

 As specified by the last parameter, this command builds the RTEMS tools 

version 4.11 for the SPARC CPU. Other version and CPU combinations 

are available as listed by the output of step 8 above. 

 This command should build completely without errors. The last line 

output should look similar to: ‘Build Set Time: 2:08:47.078118’. 

 The file specified by the --log parameter will contain all build 

commands and output. 

10. ls ~/development/rtems/4.11/bin/sparc* 

This command lists the tools created. 

The resulting list should be similar to that shown in Figure 3. 

11. To verify the tools are built successfully, check the version of a particular 

tool. For example, to check the version of the file sparc-rtems4.11-gcc, 

execute ‘sparc-rtems4.11-gcc -v’. A result similar to that shown in 

Figure 4 is expected. 



 22 

 

Figure 3. Listing of SPARC tools. 

 

 

 
Figure 4. Compiler version for SPARC CPU. 

 



 23 

 

B. EXECUTION OF RTEMS IN A SIMULATOR 

The ability to execute RTEMS in a simulator allows quick verification of the 

build environment, and quick experimentation with changes to RTEMS or the 

application. 

 

Step 1: Build RTEMS and sample applications 

First obtain the RTEMS source from the RTEMS git repository, then prepare 

RTEMS for building, finally configure, and build RTEMS. The result is a set of RTEMS 

executables that are built for the SPARC Instruction Simulator (‘sis’) BSP. This BSP 

allows the generated executables to run within the SPARC simulator for testing, 

verification and experimentation. The steps to build RTEMS are (see [19]):  

1. Login as user and execute the following commands. 

2. cd ~/development/rtems/src/ 

3. git clone git://git.rtems.org/rtems.git rtems 

4. export PATH=$HOME/development/rtems/4.11/bin:$PATH 

5. cd rtems 

6. ./bootstrap 

7. cd .. 

8. mkdir b-sis 

9. cd b-sis 

10. ../rtems/configure --target=sparc-rtems4.11 --

enable-rtemsbsp=sis --enable-tests=samples --

disable-posix 

11. make 

12. sudo PATH=$HOME/development/rtems/4.11/bin:$PATH 

make install 

13. To verify that the sample applications were built, execute ‘find . –name 

‘*.exe’’. A result similar to that shown in Figure 5 is expected. 

 



 24 

 

Figure 5. Listing of sample applications. 

 

Step 2: Start the simulator 

The simulator is a feature built into the debugger (GDB). The steps to start the 

debugger with a target program are:  

1. Login as user and execute the following commands. 

2. export PATH=$HOME/development/rtems/4.11/bin:$PATH 

3. cd ~/development/rtems/src/b-sis 

4. sparc-rtems4.11-gdb `find . -name ticker.exe` 

This command starts the simulator with the ticker application as the target 

program. A result similar to that shown in Figure 6 is expected. Note: the 

command above uses the grave, or backtick, character, not an apostrophe, or 

single quote, character. 

 

Step 3: Run the sample application 

From the debugger prompt, load and run the target application. The steps to run 

the ticker application are:  

1. target sim  

2. load 

3. run 

4. quit 

5. A result similar to that shown in Error! Reference source not found.Figure 

7 is expected. 



 25 

 

 

Figure 6. GDB simulator startup. 

 

 

Figure 7. Output of ticker application in the GDB simulator. 

 

C. EXECUTION OF RTEMS ON RASPBERRY PI 

To run an RTEMS executable on the Raspberry Pi platform, it is assumed that the 

following dependencies are satisfied by performing the steps in sections A and B: 

1. The RTEMS source builder has been installed in 

$HOME/development/rtems/src/rtems-source-builder. 

2. The RTEMS source has been installed in $HOME/development/rtems/src. 



 26 

The steps described in this section closely follow those in sections A and B, i.e., 

build the RTEMS tools (for the ARM CPU), build the RTEMS BSP (for the Raspberry 

Pi), build the executables, and run the executable (see [17]). 

This experiment includes running two executables on the Raspberry Pi. The first 

executable is the RTEMS sample ticker application and it is used to verify the build 

environment, and the configuration of the hardware and console system. The second 

executable is a more complicated RTEMS application that allows exploration of the 

running RTEMS system. 

 

Step 1: Build RTEMS tools 

The steps to build the RTEMS tools for version 4.11 and the ARM CPU are:  

1. Login as user and execute the following commands. 

2. cd ~/development/rtems/src/rtems-source-

builder/rtems 

This command sets the current directory to the RTEMS source builder 

directory. 

3. ../source-builder/sb-set-builder --log=l-arm.txt --

prefix=$HOME/development/rtems/4.11 4.11/rtems-arm 

This command builds the RTEMS tools for version 4.11 for the ARM CPU. 

4. ls ~/development/rtems/4.11/bin/arm* 

The resulting list should be similar to that shown in Figure 8. 

5. To verify the tools are built successfully, check the version of a particular 

tool. For example, to check the version of the file arm-rtems4.11-gcc, execute 

‘arm-rtems4.11-gcc -v’. A result similar to that shown in Error! 

Reference source not found.Figure 9 is expected. 



 27 

 

Figure 8. Listing of ARM tools. 

 

 

Figure 9.  Compiler version for ARM CPU. 



 28 

 

Step 2: Build RTEMS and sample executables 

The steps to build RTEMS and a set of sample executables for the Raspberry Pi 

are:  

1. Login as user and execute the following commands. 

2. cd ~/development/rtems/src 

3. mkdir b-rpi 

4. cd b-rpi 

5. ../rtems/configure --target=arm-rtems4.11 --enable-

rtemsbsp=raspberrypi --enable-tests=samples --

enable-networking --enable-posix --

prefix=/opt/rtems4.11/rpi 

6. make 

7. sudo PATH=$HOME/development/rtems/4.11/bin:$PATH 

make install 

8. To verify that the build and installation worked correctly, execute the 

following commands. Results similar to those shown in Figure 10 and Figure 

11Error! Reference source not found., respectively, are expected. 

a. ls -artl /opt/rtems-4.11/rpi 

b. find . -name ‘*.exe’ –print 

 

 

Figure 10. Installed Raspberry Pi tools. 

 

 



 29 

 

Figure 11. Raspberry Pi sample executables. 

 

Step 3: Build the RKI executable 

The RTEMS Kernel Image (RKI) executable that is found on the RTEMS on 

Raspberry Pi blog [17] allows more detailed testing of an RTEMS executable on the 

Raspberry Pi. The steps to download and build this executable are: 

1. Login as user and execute the following commands. 

2. cd ~/development/rtems/src 

3. git clone http://github.com/alanc98/rki.git 

4. cd rki 

5. The file Makefile included in the downloaded source is specific to the blog 

owner’s environment and must be modified to work in the environment 

described herein. To do this, execute the following commands: 

a. mv Makefile Makefile.orig 

b. cp Makefile.orig Makefile 

c. Edit the file Makefile, make the following changes: 

 Change the line RTEMS_TOOL_BASE ?= /home/alan/Projects/rtems/4.11 

to RTEMS_TOOL_BASE ?= /home/user/development/rtems/4.11. 

 Change the line RTEMS_BSP_BASE ?= /home/alan/Projects/rtems/4.11 

to # RTEMS_BSP_BASE ?= /home/alan/Projects/rtems/4.11. 

 Change the line WARNINGS = -Wall to WARNINGS = -Wall -Wno-

unused-but-set-variable. 

 

 



 30 

6. To build the RKI executable, execute ‘make ARCH=arm-rtems4.11 

BSP=raspberrypi 

RTEMS_BSP_BASE=/home/user/development/rtems/src/b-

rpi’. 

7. To verify that the build was successful, execute ‘find . -name 

‘rki.*’ -print’. A result similar to that shown in Figure 12 is expected. 

 

 
Figure 12. RKI build status. 

 

Step 4: Create a bootable application 

Before a sample application can run on the Raspberry Pi, its executable must be 

converted into a file type that the Raspberry Pi boot loader recognizes. The steps to 

convert the ticker executable are:  

1. Login as user and execute the following commands. 

2. cd ~/development/rtems/src/b-rpi 

3. mkdir ~/rpi_kernels 

4. arm-rtems4.11-objcopy -Obinary arm-

rtems4.11/c/raspberrypi/testsuites/samples/ticker/ti

cker.exe ~/rpi_kernels/kernel.img 

5. To verify that the file was converted, execute ‘ls -l ~/rpi_kernels’. 

A result similar to that shown in Figure 13 is expected. 

 

 
Figure 13. A Raspberry Pi bootable file 

 

 



 31 

Step 5: Copy the converted RTEMS executable to a Windows 7 system 

Transfer the bootable file from the development system to the Windows 7 system. 

The steps to do this are:  

1. On the development system, login as user and execute the following 

commands. 

2. sudo mkdir /mnt/cifs 

This command creates a mount point for the Windows share. 

3. sudo mount -t cifs -o username=<Windows 
user>,domain=<Windows domain> //<Windows 

IP>/<Windows share> /mnt/cifs’[24]. Where 

 <Windows user> is replaced by the username on the Windows system. 

 <Windows domain> is replaced by the domain of the Windows system. 

 <Windows IP> is replaced by the IP address, or name, of the Windows 

system. 

 <Windows share> is replaced by the name of the share on the Windows 

system. 

This command mounts the Windows share. 

4. sudo cp 
/home/user/development/rpi_kernels/kernel.img 

/mnt/cifs/<path>’. Where 

 <path> is replaced by the appropriate path on the Windows share. 

This command copies the file to the Windows share. 

5. sudo umount /mnt/cifs 

This command unmounts (disconnects) the Windows share. 

 

Step 6: Prepare a bootable SD card 

To boot the Raspberry Pi, a micro SD card is used. The steps to copy the boot 

files and application from the Windows 7 system to the SD card are:  

1. Ensure that the boot files listed in Section II.C.6 have been downloaded to the 

Windows 7 system. 

2. Insert the SD card reader into a USB port on the Windows 7 system. 

3. If the SD card has any previous contents, save the files if necessary, and delete 

all files from the SD card. 

4. Copy the boot files to the root (top level) folder of the SD card. 

5. Copy the converted RTEMS executable file (created in Step 4 above) to the 

root folder of the SD card. 

The contents of the SD card should be similar to that shown in  

6. Figure 14. 

 



 32 

 
 

Figure 14. Contents of SD card ready for booting on the Raspberry Pi 

 

Step 6: Run the application 

The steps to run the ticker application on the Raspberry Pi are: 

1. Ensure the Raspberry Pi is powered off. 

2. Remove the existing SD card, if any. 

3. Install the SD card prepared in the previous step. 

4. Attach a USB-serial cable [20] to the Raspberry Pi according to the 

instructions in [21]. Do NOT use the red power cable. 

5. Attach the USB-serial cable to the console computer. The instructions in [21] 

include details showing how to install and run a terminal emulator on various 

operating systems. 

6. Start the terminal emulator program. 

7. Apply power to the Raspberry Pi. 

8. The output should be similar to that shown in Figure 15. 

 

 



 33 

 
Figure 15. Output of ticker application on Raspberry Pi 

 

Step 7: Run the RKI on the Raspberry Pi 

To run the RKI on the Raspberry Pi, use the Windows system to prepare the SD 

card with the boot files, copy the RKI to the Windows system, then to the SD card, then 

boot the Raspberry Pi. The steps to do this are:  

1. If the SD card has any previous contents, save the files if necessary, and delete 

all files from the SD card. 

2. Copy the boot files (see II.C.6) to the root (top level) folder of the SD card. 

3. Unlike the ‘ticker’ example above, the RKI binary file does not need any 

conversion. The file to copy is located on the development system at 

/home/user/development/rtems/src/b-rpi/legacy-build/arm-rtems4.11-

raspberrypi/rki.bin. Copy this file to the Windows systems using Step 5 above 

as an example. Copy this file to the root folder of the SD card. 

4. Rename the file on the SD card to kernel.img. 

5. Follow Step 6 above to run the RKI application. No modifications to this 

procedure are required. The initial screen should be similar to that shown in 

Figure 16. 

 



 34 

 

Figure 16. RKI start-up screen 

 

Warning: The RKI application executes with root privileges. Care should be taken 

to not delete any system files, or make changes that could cause the system to become 

unusable. 

The startup of the RKI automatically executes the commands contained in the file 

/shell-init (see Figure 16). This file includes commands to create and mount a RAM disk, 

which allows direct access to a portion of the Raspberry Pi RAM as a file system. 

Following the initialization, an RTEMS shell is started to allow the user to execute 

arbitrary commands. There are commands to manipulate files, system date, time and real-

time clock, tasks, and many more. A list of commands can be seen by using the help 

command. Full documentation of the RTEMS Shell can be found in [22]. Figure 17 is an 

example of the help screen for file-related commands. 

 



 35 

 

Figure 17. RKI file-related commands 

 

There are also two benchmark-related commands dhrystone, and whetstone, 

which can be used to compare RTEMS performance against other real-time operating 

systems. Figure 18 is an example of the output of the whetstone benchmark. 



 36 

 

Figure 18. RKI whetstone results 

 

Additionally, there are commands that display information about RTEMS 

resource usage, see Figure 19. 

 

 

Figure 19. RKI resource usage 

 



 37 

IV. CONCLUSION AND FUTURE WORK 

This report describes the results of our experiments with RTEMS. Our motivation 

was to gain an understanding of the inner working of RTEMS to support research on 

network-based covert communications in space systems constructed with multilevel 

security capabilities. We have provided a set of instructions on how to build and run 

RTEMS in a SPARC simulator and on a Raspberry Pi computer.  

Future work includes extending the RKI application to handle Ethernet 

networking, and running the Core Flight Software on RTEMS executing on the 

Raspberry Pi. These two efforts will help further our understanding of both RTEMS 

internals and the Core Flight Software system. 

 

  



 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



 39 

LIST OF REFERENCES 

 

[1] On-line Applications Research Corporation, “RTEMS C User’s Guide, edition 

4.10.2 for RTEMS 4.10.2,” December 2011. 

[2] Aeroflex Gaisler AB, "Operating Systems Compilers and Real-time Operating 

Systems for LEON and ERC32," April 2010. Available at: 

http://www.gaisler.com/doc/operating_systems_product_sheet.pdf. Accessed: 

January 2015. 

[3] On-line Applications Research Corporation, “RTEMS Wiki.” Available at: 

https://devel.rtems.org/wiki/TBR/BSP/Rad750. Accessed: January 2015. 

[4] Saab Ericsson Space, "Spacecraft Management Unit," March 2005. Available at: 

https://www.rtems.org/sites/default/files/Spacecraft_Management_Unit_Saab-2011-

10.pdf. Accessed: January 2015. 

[5] On-line Applications Research Corporation, "RTEMS Application Spotlight 

Electra," October 2011. Available at: 

https://www.rtems.org/sites/default/files/Application-Electra-2011-10.pdf. 

Accessed: January 2015. 

[6] National Aeronautics and Space Administration, "NASA’s Core Flight Software - a 

Reusable Real-Time Framework," November 2014. Available at: 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140017040.pdf. Accessed: 

January 2015. 

[7] Nguyen, T. D., "A Study of Covert Communications in Space Platforms Hosting 

Government Payloads," Naval Postgraduate School Technical Report NPS-CAG-

15-002, January 2015. (To be published) 

[8] On-line Applications Research Corporation, “RTEMS.” Available at: 

https://www.rtems.org/. Accessed: January 2015. 

[9] On-line Applications Research Corporation, “RTEMS CPUs.” Available at:  

https://devel.rtems.org/wiki/TBR/UserManual/SupportedCPUs. Accessed: January 

2015. 

[10] On-line Applications Research Corporation, “RTEMS Board Support Packages.”  

Available at:  https://devel.rtems.org/wiki/TBR/Website/Board_Support_Packages. 

Accessed: January 2015. 

[11] Military Standard MIL–STD–1553B: “Aircraft Internal Time Division 

Command/Response Multiplex Data Bus,” September 21, 1978.  

[12] European Cooperation for Space Standardization, “ECSS-E-ST-50-12C SpaceWire 

- Links, nodes, routers and networks,” July 2008. 

[13] BAE Systems, “BAE RAD750.” Available at: http://www.baesystems.com/our-

company-rzz/our-businesses/electronic-systems/product-sites/space-products-and-

processing/processors. Accessed: January 2015. 

[14] Aeroflex Gaisler AB, “GR-LEON4-ITX LEON4.” Available at: 

http://gaisler.com/index.php/products/boards/gr-leon4-itx. Accessed: January 2015. 



 40 

[15] Aeroflex Gaisler AB, “GR-CPCI-LEON4-N2X.” Available at: 

http://gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x. Accessed: January 

2015. 

[16] Raspberry Pi. Available at:  http://www.raspberrypi.org/. Accessed: January 2015. 

[17] Alan C., “RTEMS on Raspberry Pi,” March 28, 2013. [blog entry]. Available at: 

http://alanstechnotes.blogspot.com/2013/03/rtems-on-raspberry-pi.html. Accessed: 

January 2015. 

[18] On-line Applications Research Corporation, “RTEMS Source Builder.” Available 

at: http://ftp.rtems.org/pub/rtems/people/chrisj/source-builder/source-builder.html. 

Accessed: January 2015. 

[19] On-line Applications Research Corporation, “RTEMS Quick Start Guide.” 

Available at: https://devel.rtems.org/wiki/TBR/UserManual/Quick_Start. Accessed: 

January 2015. 

[20] Adafruit, Raspberry Pi console cable, USB-Serial cable. Available at: 

http://www.adafruit.com/product/954. Accessed: January 2015. 

[21] Adafruit, “Using the Raspberry Pi console cable.” Available at: 

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable. 

Accessed: January 2015. 

[22] On-line Applications Research Corporation, “RTEMS Shell User’s Guide.” 

Available at: http://docs.rtems.org/doc-current/share/rtems/html/shell/index.html. 

Accessed: January 2015. 

[23] Red Hat, Inc., “Fedora 19 Installation Guide.” Available at: 

http://docs.fedoraproject.org/en-US/Fedora/19/html/Installation_Guide. Accessed: 

January 2015. 

[24] Red Hat, Inc., “Mounting Windows shares.” Available at: 

https://access.redhat.com/solutions/448263. Accessed: January 2015. 

[25] Motorola, Inc., “MCP750 CompactPCI Single Board Computer Installation and 

Use,” July 2002. Available at: 

https://www.slac.stanford.edu/exp/glast/flight/docs/MCP750/MCP750_Install.pdf. 

Accessed: February 2015. 

[26] Simon Tatham, “PuTTY: A Free Telnet/SSH Client.” Available at: 

http://www.chiark.greenend.org.uk/~sgtatham/putty/. Accessed: February 2015. 

[27] Roger Meier, “Roger Meier's Freeware.” Available at: http://freeware.the-

meiers.org/. Accessed: February 2015. 

[28] Todd C. Miller, "Visudo Manual." Available at: 

http://www.sudo.ws/visudo.man.html. Accessed: February 2015. 

 

 

 

 



 41 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 

Ft. Belvoir, Virginia  

 

2. Dudley Knox Library 

Naval Postgraduate School 

Monterey, California  

 

3. Research Sponsored Programs Office, Code 41 

Naval Postgraduate School 

Monterey, CA 93943  

 


